Exploring

Parallelograms with GSP

Part A: Constructing a parallelogram

- 1. Construct $\angle BAC$ using segments
- 2. Construct a line parallel to \overline{AB} through point C
- 3. Construct a line parallel to \overline{AC} through point B
- 4. Construct point *D* at the intersection of these two parallel lines.
- 5. Hide the parallel lines by selecting them and going to [Display]→[Hide Lines]
- 6. Construct sides \overline{BD} and \overline{CD}
- 7. You should now have a parallelogram. Move each point one at a time to make sure it remains a parallelogram.

Part B: Parallelogram Sides and Angles

1.	Measure the length of each side of the parallelogram.
	Use your observation to complete this theorem:
	The opposite sides of a parallelogram are
	Now move the vertices to see if this is always true.
2.	Measure all the angles of the parallelogram.
	Use your observations to complete the following theorems:
	The opposite angles of a parallelogram are
	Now move the vertices to see if this is always true.
	Consecutive angles of a parallelogram are
	Consecutive angles of a parallelogram are

Part C: Diagonals of a parallelogram

A diagonal of a polygon is a segment that connects two *non-consecutive* vertices.

- 1. Construct the two diagonals of your parallelogram.
- 2. Construct the point *M* at the intersection of the diagonals.
- 3. Measure the distances *AM*, *MD*, *BM*, and *MC* How do these lengths relate to each other?

Complete the theorem	based	on your	observations
----------------------	-------	---------	--------------

The diagonals of a parallelogram	each other